Question 1

Let $f: R \rightarrow R$ be a differentiable function. Prove that there is a point $t \in(0,1)$ such that

$$
f(1)-f(0)=\frac{\pi}{2} \sqrt{1-t^{2}} f^{\prime}(t) .
$$

(Hint: Consider $g(x)=f(\sin x)$ for all $0 \leq x \leq \frac{\pi}{2}$)
(10 Marks)
Question 2
Let $a_{n}=\frac{2^{3}-1}{2^{3}+1} \cdot \frac{3^{3}-1}{3^{3}+1} \cdots \frac{n^{3}-1}{n^{3}+1}$. Find $\lim _{n \rightarrow \infty} a_{n}$.
(Hint: You may use the identity $\left.a^{2}-a+1=(a-1)^{2}+(a-1)+1\right)$
(10 Marks)

Question 3

Find $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\frac{1}{n}\right)$, where \ln denotes the natural logarithm.
(10 Marks)

Question 4

Let A, B be $n \times n$ real matrices. If $A B=A+B$, show that $A B=B A$.
(10 Marks)

Question 5

Let V and W be finite dimensional vector spaces and $f: V \rightarrow W$ be a linear transformation with kernel f is the set $\operatorname{Ker}(f)=\{v \mid f(v)=0\}$. Prove that f is one to one if and only if $\operatorname{Ker}(f)=\{0\}$.

Question 6

A nonempty set S with a binary operation $*$ is called a semigroup if
i) $a, b \in S$ then $a * b \in S$
ii) $a *(b * c)=(a * b) * c$ for all $a, b, c \in S$.

Further, a nonempty set T with a ternary operation \bullet is called a ternary semigroup if
i) $a, b, c \in T$ then $a \bullet b \bullet c \in T$
ii) $(a \bullet b \bullet c) \bullet d \bullet e=a \bullet(b \bullet c \bullet d) \bullet e=a \bullet b \bullet(c \bullet d \bullet e)$ for all $a, b, c, d, e \in T$.

Prove that S with this ternary operation \bullet is a ternary semigroup.

