Question 1

Let $f: R \to R$ be a differentiable function. Prove that there is a point $t \in (0,1)$ such that

$$f(1) - f(0) = \frac{\pi}{2}\sqrt{1 - t^2} f'(t)$$

r all $0 \le r \le \frac{\pi}{2}$

(Hint: Consider $g(x) = f(\sin x)$ for all $0 \le x \le \frac{\pi}{2}$)

Question 2

Let $a_n = \frac{2^3 - 1}{2^3 + 1} \cdot \frac{3^3 - 1}{3^3 + 1} \cdots \frac{n^3 - 1}{n^3 + 1}$. Find $\lim_{n \to \infty} a_n$.

(Hint: You may use the identity $a^2 - a + 1 = (a - 1)^2 + (a - 1) + 1$)

(10 Marks)

(10 Marks)

Question 3

Find $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(\frac{k}{n} + \frac{1}{n}\right)$, where ln denotes the natural logarithm.

(10 Marks)

Question 4

Let A, B be $n \times n$ real matrices. If AB = A + B, show that AB = BA.

(10 Marks)

Question 5

Let V and W be finite dimensional vector spaces and $f: V \to W$ be a linear transformation with kernel f is the set $Ker(f) = \{v | f(v) = 0\}$. Prove that f is one to one if and only if $Ker(f) = \{0\}$.

(10 Marks)

Question 6

A nonempty set *S* with a binary operation * is called a semigroup if

- i) $a, b \in S$ then $a * b \in S$
- ii) a*(b*c) = (a*b)*c for all $a, b, c \in S$.

Further, a nonempty set T with a ternary operation \bullet is called a ternary semigroup if

i) $a, b, c \in T$ then $a \bullet b \bullet c \in T$

ii) $(a \bullet b \bullet c) \bullet d \bullet e = a \bullet (b \bullet c \bullet d) \bullet e = a \bullet b \bullet (c \bullet d \bullet e)$ for all $a, b, c, d, e \in T$.

Prove that S with this ternary operation • is a ternary semigroup.

(10 Marks)